Addition Properties						
1						
	Commutative Property of Addition	Associative Property of Addition				
	Addends can be added in any order.	Addends can be grouped in different ways and the sum will not change. Addends are				
	example: $4 + 8 + 3 = 15$ 8 + 3 + 4 = 15	grouped with parenthesis. (You add the part in parenthesis first.)				
		example: $(9 + 2) + 3 = 14$ 9 + (2 + 3) = 14				
1.	Use the commutative property of addition to 6, 7, and 8. a b c Explain how (13 + 10) + 5 is solved differently					
3.	Do you think there is a commutative proper	rty of subtraction? Why or why not?				

ANSWER KEY

Addition Properties

Commutative	Property	of Addition

Addends can be added in any order.

example: 4 + 8 + 3 = 158 + 3 + 4 = 15

Associative Property of Addition

Addends can be grouped in different ways and the sum will not change. Addends are grouped with parenthesis. (You add the part in parenthesis first.)

example: (9 + 2) + 3 = 149 + (2 + 3) = 14

1. Use the commutative property of addition to write three different problems with the addends 6, 7, and 8.

a. <u>6 + 7 + 8 = 21</u>	Also accept:	<u>8 + 7 + 6 = 21</u>
b. <u>7 + 8 + 6 = 21</u>		<u>7 + 6 + 8 = 21</u>
c. <u>6 + 8 + 7 = 21</u>		<u>8 + 6 + 7 = 21</u>

2. Explain how (13 + 10) + 5 is solved differently from 13 + (10 + 5).

In (13 + 10) + 5, you add 13 + 10 first, then add 5.

In 13 + (10 + 5), you add the 10 + 5 first, then add 13.

3. Do you think there is a commutative property of subtraction? Why or why not?

There is no commutative property of subtraction. In a subtraction number you must subtract the smaller number from the bigger number.

Also accept: You get a different answer if you reverse the numbers in a subtraction problem.